Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation H Barucq, T Chaumont-Frelet, C Gout Mathematics of Computation 86 (307), 2129-2157, 2017 | 34 | 2017 |

High-frequency behaviour of corner singularities in Helmholtz problems T Chaumont-Frelet, S Nicaise ESAIM: Mathematical Modelling and Numerical Analysis 52 (5), 1803-1845, 2018 | 23 | 2018 |

Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems T Chaumont-Frelet, S Nicaise IMA Journal of Numerical Analysis 40 (2), 1503-1543, 2020 | 21 | 2020 |

Finite element approximation of Helmholtz problems with application to seismic wave propagation T Chaumont-Frelet PhD thesis, Rouen, INSA, 2015. HAL Id: tel-01246244. Available at https …, 0 | 20* | |

On high order methods for the heterogeneous Helmholtz equation T Chaumont-Frelet Computers & Mathematics with Applications 72 (9), 2203-2225, 2016 | 15 | 2016 |

Finite element approximation of electromagnetic fields using nonfitting meshes for Geophysics T Chaumont-Frelet, S Nicaise, D Pardo SIAM Journal on Numerical Analysis 56 (4), 2288-2321, 2018 | 7 | 2018 |

A painless automatic hp-adaptive strategy for elliptic problems V Darrigrand, D Pardo, T Chaumont-Frelet, I Gómez-Revuelto, ... Finite Elements in Analysis and Design 178, 103424, 2020 | 6 | 2020 |

A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains T Chaumont-Frelet, F Valentin SIAM Journal on Numerical Analysis 58 (2), 1029-1067, 2020 | 6 | 2020 |

Finite element simulations of logging-while-drilling and extra-deep azimuthal resistivity measurements using non-fitting grids T Chaumont-Frelet, D Pardo, A Rodriguez-Rozas Computational Geosciences, 2018 | 6 | 2018 |

Upscaling for the Laplace problem using a discontinuous Galerkin method H Barucq, T Chaumont-Frelet, J Diaz, V Péron Journal of Computational and Applied Mathematics 240, 192-203, 2013 | 6 | 2013 |

Polynomial-degree-robust -stability of discrete minimization in a tetrahedron T Chaumont-Frelet, A Ern, M Vohralík Comptes Rendus. Mathématique 358 (9-10), 1101-1110, 2020 | 5 | 2020 |

On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation T Chaumont-Frelet, A Ern, M Vohralík Numerische Mathematik, 1-49, 2021 | 4 | 2021 |

Uniform a priori estimates for elliptic problems with impedance boundary conditions T Chaumont-Frelet, S Nicaise, J Tomezyk Communications on Pure & Applied Analysis 19 (5), 2445, 2020 | 4 | 2020 |

Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers T Chaumont-Frelet Calcolo 56 (4), 1-27, 2019 | 4 | 2019 |

Stable broken H (curl) polynomial extensions and p-robust quasi-equilibrated a posteriori estimators for Maxwell's equations T Chaumont-Frelet, A Ern, M Vohralík arXiv preprint arXiv:2005.14537, 2020 | 3 | 2020 |

Wavenumber explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers T Chaumont-Frelet, D Gallistl, S Nicaise, J Tomezyk | 3 | 2018 |

Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations T Chaumont-Frelet, P Vega arXiv preprint arXiv:2009.09204, 2020 | 2 | 2020 |

Stable broken H (curl) polynomial extensions and p-robust a posteriori error estimates by broken patchwise equilibration for the curl-curl problem T Chaumont-Frelet, A Ern, M Vohralík | 2 | 2020 |

Wavenumber explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers D Gallistl, T Chaumont-Frelet, S Nicaise, J Tomezyk HAL preprint, 2018 | 2 | 2018 |

Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods T Chaumont-Frelet, A Ern, S Lemaire, F Valentin arXiv preprint arXiv:2106.01693, 2021 | 1 | 2021 |